博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
SMS短信PDU编码
阅读量:6381 次
发布时间:2019-06-23

本文共 7355 字,大约阅读时间需要 24 分钟。

目前,发送短消息常用Text和PDU(Protocol Data Unit,协议数据单元)模式。使用Text模式收发短信代码简单,实现起来十分容易,但最大的缺点是不能收发中文短信;而PDU模式不仅支持中文短信,也能发送英文短信。PDU模式收发短信可以使用3种编码:7-bit、8-bit和UCS2编码。7-bit编码用于发送普通的ASCII字符,8-bit编码通常用于发送数据消息,UCS2编码用于发送Unicode字符。一般的PDU编码由A B C D E F G H I J K L M十三项组成。

A:短信息中心地址长度,2位十六进制数(1字节)。

B:短信息中心号码类型,2位十六进制数。
C:短信息中心号码,B+C的长度将由A中的数据决定。
D:文件头字节,2位十六进制数。
E:信息类型,2位十六进制数。
F:被叫号码长度,2位十六进制数。
G:被叫号码类型,2位十六进制数,取值同B。
H:被叫号码,长度由F中的数据决定。
I:协议标识,2位十六进制数。
J:数据编码方案,2位十六进制数。
K:有效期,2位十六进制数。
L:用户数据长度,2位十六进制数。
M:用户数据,其长度由L中的数据决定。J中设定采用UCS2编码,这里是中英文的Unicode字符。

PDU编码协议简单说明

例1 发送:SMSC号码是+8613800250500,对方号码是13693092030,消息内容是“Hello!”。从手机发出的PDU串可以是

08 91 68 31 08 20 05 05 F0 11 00 0D 91 68 31 96 03 29 30 F0 00 00 00 06 C8 32 9B FD 0E 01
对照规范,具体分析:
分段 含义 说明

08 SMSC地址信息的长度 共8个八位字节(包括91)91 SMSC地址格式(TON/NPI) 用国际格式号码(在前面加‘+’)68 31 08 20 05 05 F0 SMSC地址 8613800250500,补‘F’凑成偶数个11 基本参数(TP-MTI/VFP) 发送,TP-VP用相对格式00 消息基准值(TP-MR) 00D 目标地址数字个数 共13个十进制数(不包括91和‘F’)91 目标地址格式(TON/NPI) 用国际格式号码(在前面加‘+’)68 31 96 03 29 30 F0 目标地址(TP-DA) 8613693092030,补‘F’凑成偶数个00 协议标识(TP-PID) 是普通GSM类型,点到点方式00 用户信息编码方式(TP-DCS) 7-bit编码00 有效期(TP-VP) 5分钟06 用户信息长度(TP-UDL) 实际长度6个字节C8 32 9B FD 0E 01 用户信息(TP-UD) “Hello!”

 

例2 接收:SMSC号码是+8613800250500,对方号码是13693092030,消息内容是“你好!”。手机接收到的PDU串可以是

08 91 68 31 08 20 05 05 F0 84 0D 91 68 31 96 03 29 30 F0 00 08 30 30 21 80 63 54 80 06 4F 60 59 7D 00 21
对照规范,具体分析:
分段 含义 说明

08 地址信息的长度 个八位字节(包括91)91 SMSC地址格式(TON/NPI) 用国际格式号码(在前面加‘+’)68 31 08 20 05 05 F0 SMSC地址 8613800250500,补‘F’凑成偶数个84 基本参数(TP-MTI/MMS/RP) 接收,无更多消息,有回复地址0D 回复地址数字个数 共13个十进制数(不包括91和‘F’)91 回复地址格式(TON/NPI) 用国际格式号码(在前面加‘+’)68 31 96 03 29 30 F0 回复地址(TP-RA) 8613693092030,补‘F’凑成偶数个00 协议标识(TP-PID) 是普通GSM类型,点到点方式08 用户信息编码方式(TP-DCS) UCS2编码30 30 21 80 63 54 80 时间戳(TP-SCTS) 2003-3-12 08:36:45 +8时区06 用户信息长度(TP-UDL) 实际长度6个字节4F 60 59 7D 00 21 用户信息(TP-UD) “你好!”

 

若基本参数的最高位(TP-RP)为0,则没有回复地址的三个段。从Internet上发出的短消息常常是这种情形。

注意号码和时间的表示方法,不是按正常顺序顺着来的,而且要以‘F’将奇数补成偶数。

在PDU Mode中,可以采用三种编码方式来对发送的内容进行编码,它们是7-bit、8-bit和UCS2编码。7-bit编码用于发送普通的ASCII字符,它将一串7-bit的字符(最高位为0)编码成8-bit的数据,每8个字符可“压缩”成7个;8-bit编码通常用于发送数据消息,比如图片和铃声等;而UCS2编码用于发送Unicode字符。PDU串的用户信息(TP-UD)段最大容量是140字节,所以在这三种编码方式下,可以发送的短消息的最大字符数分别是160、140和70。这里,将一个英文字母、一个汉字和一个数据字节都视为一个字符。

需要注意的是,PDU串的用户信息长度(TP-UDL),在各种编码方式下意义有所不同。7-bit编码时,指原始短消息的字符个数,而不是编码后的字节数。8-bit编码时,就是字节数。UCS2编码时,也是字节数,等于原始短消息的字符数的两倍。如果用户信息(TP-UD)中存在一个头(基本参数的TP-UDHI为1),在所有编码方式下,用户信息长度(TP-UDL)都等于头长度与编码后字节数之和。如果采用GSM 03.42所建议的压缩算法(TP-DCS的高3位为001),则该长度也是压缩编码后字节数或头长度与压缩编码后字节数之和。

参见详细英文说明:http://www.dreamfabric.com/sms/

将源串每8个字符分为一组(这个例子中不满8个)进行编码,在组内字符间压缩,但每组之间是没有什么联系的。

用C实现7-bit编码和解码的算法如下:

// 7-bit编码// pSrc: 源字符串指针// pDst: 目标编码串指针// nSrcLength: 源字符串长度// 返回: 目标编码串长度int gsmEncode7bit(const char* pSrc, unsigned char* pDst, int nSrcLength){     int nSrc;         // 源字符串的计数值     int nDst;         // 目标编码串的计数值     int nChar;        // 当前正在处理的组内字符字节的序号,范围是0-7     unsigned char nLeft;     // 上一字节残余的数据          // 计数值初始化     nSrc = 0;     nDst = 0;          // 将源串每8个字节分为一组,压缩成7个字节     // 循环该处理过程,直至源串被处理完     // 如果分组不到8字节,也能正确处理     while(nSrc
<< (8-nChar)) | nLeft; // 将该字节剩下的左边部分,作为残余数据保存起来 nLeft = *pSrc >> nChar; // 修改目标串的指针和计数值 pDst++; nDst++; } // 修改源串的指针和计数值 pSrc++; nSrc++; } // 返回目标串长度 return nDst; } // 7-bit解码// pSrc: 源编码串指针// pDst: 目标字符串指针// nSrcLength: 源编码串长度// 返回: 目标字符串长度int gsmDecode7bit(const unsigned char* pSrc, char* pDst, int nSrcLength){ int nSrc; // 源字符串的计数值 int nDst; // 目标解码串的计数值 int nByte; // 当前正在处理的组内字节的序号,范围是0-6 unsigned char nLeft; // 上一字节残余的数据 // 计数值初始化 nSrc = 0; nDst = 0; // 组内字节序号和残余数据初始化 nByte = 0; nLeft = 0; // 将源数据每7个字节分为一组,解压缩成8个字节 // 循环该处理过程,直至源数据被处理完 // 如果分组不到7字节,也能正确处理 while(nSrc
<< nByte) | nLeft) & 0x7f; // 将该字节剩下的左边部分,作为残余数据保存起来 nLeft = *pSrc >> (7-nByte); // 修改目标串的指针和计数值 pDst++; nDst++; // 修改字节计数值 nByte++; // 到了一组的最后一个字节 if(nByte == 7) { // 额外得到一个目标解码字节 *pDst = nLeft; // 修改目标串的指针和计数值 pDst++; nDst++; // 组内字节序号和残余数据初始化 nByte = 0; nLeft = 0; } // 修改源串的指针和计数值 pSrc++; nSrc++; } *pDst = 0; // 返回目标串长度 return nDst;}

需要指出的是,7-bit的字符集与ANSI标准字符集不完全一致,在0x20以下也排布了一些可打印字符,但英文字母、阿拉伯数字和常用符号的位置两者是一样的。用上面介绍的算法收发纯英文短消息,一般情况应该是够用了。如果是法语、德语、西班牙语等,含有 “?”、 “é”这一类字符,则要按上面编码的输出去查表,请参阅GSM 03.38的规定。

8-bit编码其实没有规定什么具体的算法,不需要介绍。

UCS2编码是将每个字符(1-2个字节)按照ISO/IEC106的规定,转变为16位的Unicode宽字符。在Windows系统中,特别是在2000/XP中,可以简单地调用API 函数实现编码和解码。如果没有系统的支持,比如用单片机控制手机模块收发短消息,只好用查表法解决了。

Windows环境下,用C实现UCS2编码和解码的算法如下:

// UCS2编码// pSrc: 源字符串指针// pDst: 目标编码串指针// nSrcLength: 源字符串长度// 返回: 目标编码串长度int gsmEncodeUcs2(const char* pSrc, unsigned char* pDst, int nSrcLength){     int nDstLength;         // UNICODE宽字符数目     WCHAR wchar[128];       // UNICODE串缓冲区          // 字符串-->UNICODE串     nDstLength = ::MultiByteToWideChar(CP_ACP, 0, pSrc, nSrcLength, wchar, 128);          // 高低字节对调,输出     for(int i=0; i
> 8; // 后输出低位字节 *pDst++ = wchar[i] & 0xff; } // 返回目标编码串长度 return nDstLength * 2;} // UCS2解码// pSrc: 源编码串指针// pDst: 目标字符串指针// nSrcLength: 源编码串长度// 返回: 目标字符串长度int gsmDecodeUcs2(const unsigned char* pSrc, char* pDst, int nSrcLength){ int nDstLength; // UNICODE宽字符数目 WCHAR wchar[128]; // UNICODE串缓冲区 // 高低字节对调,拼成UNICODE for(int i=0; i
<< 8; // 后低位字节 wchar[i] |= *pSrc++; } // UNICODE串-->字符串 nDstLength = ::WideCharToMultiByte(CP_ACP, 0, wchar, nSrcLength/2, pDst, 160, NULL, NULL); // 输出字符串加个结束符 pDst[nDstLength] = '\0'; // 返回目标字符串长度 return nDstLength;}用以上编码和解码模块,还不能将短消息字符串编码为PDU串需要的格式,也不能直接将PDU串中的用户信息解码为短消息字符串,因为还差一个在可打印字符串和字节数据之间相互转换的环节。可以循环调用sscanf和sprintf函数实现这种变换。下面提供不用这些函数的算法,它们也适用于单片机、DSP编程环境。// 可打印字符串转换为字节数据// 如:"C8329BFD0E01" --> {0xC8, 0x32, 0x9B, 0xFD, 0x0E, 0x01}// pSrc: 源字符串指针// pDst: 目标数据指针// nSrcLength: 源字符串长度// 返回: 目标数据长度int gsmString2Bytes(const char* pSrc, unsigned char* pDst, int nSrcLength){ for(int i=0; i
='0' && *pSrc<='9') { *pDst = (*pSrc - '0') << 4; } else { *pDst = (*pSrc - 'A' + 10) << 4; } pSrc++; // 输出低4位 if(*pSrc>='0' && *pSrc<='9') { *pDst |= *pSrc - '0'; } else { *pDst |= *pSrc - 'A' + 10; } pSrc++; pDst++; } // 返回目标数据长度 returnnSrcLength / 2;} // 字节数据转换为可打印字符串// 如:{0xC8, 0x32, 0x9B, 0xFD, 0x0E, 0x01} --> "C8329BFD0E01" // pSrc: 源数据指针// pDst: 目标字符串指针// nSrcLength: 源数据长度// 返回: 目标字符串长度int gsmBytes2String(const unsigned char* pSrc, char* pDst, int nSrcLength){ const char tab[]="0123456789ABCDEF"; // 0x0-0xf的字符查找表 for(int i=0; i
> 4]; // 输出高4位 *pDst++ = tab[*pSrc & 0x0f]; pSrc++; } // 输出字符串加个结束符 *pDst = '\0'; // 返回目标字符串长度 return nSrcLength * 2;}

相关链接:     

本文转自 K1two2 博客园博客,原文链接:http://www.cnblogs.com/k1two2/p/5114203.html  ,如需转载请自行联系原作者

你可能感兴趣的文章
特斯拉悄悄搞出无人车AI芯片,已经投产测试,而且没带英伟达
查看>>
LVS、Nginx和HAProxy负载均衡器对比总结
查看>>
Samsung_tiny4412(驱动笔记01)----linux 3.5,U-Boot,Busybox,SD卡启动环境搭建
查看>>
爬虫攻略(一)
查看>>
正则表达式语法
查看>>
修改Android系统字号(一)
查看>>
零元学Expression Blend 4 - Chapter 45 ListBox里的物件不能换行吗?
查看>>
Elasticsearch上手——几个基本概念
查看>>
深入探索AngularJS(持续更新)
查看>>
程序员的10大成功面试技巧
查看>>
一个线程的独白
查看>>
elasticsearch threadpool setting
查看>>
二叉树——BinaryTree 非递归遍历算法(Java)
查看>>
iphone:给任意的控件进行截图
查看>>
ubuntu 13.04 安装 gitlab 5.3 版
查看>>
Xqk.Data数据框架开发指南:丰富的、灵活的查询方法(第二部分:适应不同数据库系统的查询)...
查看>>
linux Svn服务器安装
查看>>
PHP连接局域网MYSQL数据库的简单实例
查看>>
Android Studio下Jni开发配置
查看>>
wdCP v3正式版发布
查看>>